
N92-22 718
INSTRUMENTATION, PERFORMANCE VISUALIZATION AND

DEBUGGING TOOLS FOR MULTIPROCESSORS

Jeery C. Yam and Chinks E. F'memam

Sterling Federal Systems Inc.
MS 244-4, NASA Ames Research Center, Moffett Field, CA 94035

Philip J. Hontalas

Computational Systems Research Branch
MS 244-4, NASA Ames Research Center, Moffett Field, CA 94035

ABSTRACT

The need for computing power has forced a migration from serial computation on a single processor to paral-

lel processing on multiprocessor architectures. However, without effective means to monitor (and visualize)

program execution, debugging and tuning parallel programs becomes inuactably difficult as program complex-

ity increases with the number of processors. Research on performance evaluation tools for multiprocessors is

being carried out at NASA Ames Research Center. Besides investigating new techniques for instrumenting,

monitoring and presenting the state of parallel program execution in a coherent and user-friendly manner,

prototypes of software tools are being incorporated into the ran-time environments of various hardware testbeds

to evaluate their impact on user productivity. Our current tool set, the Ames InstruMentation System (or

AIMS), incorporates features from various software systems developed in academia and industry. The

execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored.

Performance data thus collected can be displayed graphically on workstations supporting X-Windows. We
have successfully compared various parallel algorithms for CFD applications in collaboration with scientists

from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show

that performance monitors and debuggers such as AIMS are practical and can illuminate the complex

dynamics that occur within parallel programs.

1. INTRODUCTION

1.1. Motivation and Baekm'ound

While parallel processing promises to deliver orders of magnitude speed-up in the near future, the actual

speed-up obtained from parallel processing will always depend critically on three factors: i.) how the parallel

application is formulated; ii.) the architecture of the multiprocessor and iii.) how well the application is
mapped onto the machine. Although research in these areas has produced many interesting results based on

simulation and theoretical considerations, their validity must be substantiated by data gathered from actual

implementations. Such performance evaluation on multiprocessors presents many technical challenges.

A parallel program has many threads of control. Whether they are expressed as "parallel de-loops" or con-
current processes/objects, the completion time of the entire program depends on the order in which synchro-

nization/communication events occur on different control threads. This "event-ordering" data is difficult to

collect, analyze and present in a manner that relates performance with program structure and hardware
architecture. Having accurate resource utilization information, for example, can be especially helpful for

evaluating the effectiveness of the current program-to-machine mapping A whether there is proper trade-off

between communication and concurrency as the computation is distributed over many processors.

In summary, whether a researcher is designing the "next parallel programming paradigm", another

"scalable multiprocessor" or investigating resource allocation algorithms for multiprocessors, a facility that
enables parallel program execution to be captured and displayed is invaluable. Careful analysis of such infor-

377

marion can help computer and software architects to detect, and therefore, exploit behavioral variations

among/within parallel programs to take advantage of specific hardware characteristics.

1.2. Instrumentation Methodoloaies

Performance evaluation presumes some form of instrumentation -- a mechanism whereby the execution of

the program can be monitored. A variety of such mechanisms have been proposed to gather different informa-

tion; these include event sampling, passive event recorders, and inserted active event recorders. A detailed

survey of the various insmunentation methodologies for mulriprocessors may be found in [l].

An event sampler, whether software or hat_lware, periodically examines and records the state of the execut-

ing software. For example, the UNIX &pro/[2] has been used to collect statistics about the the distribution of

work among the modules and statements of a sequential application. In a sequential environment, an external

agent (usually another process in a multiprogramming environment) carries out the samplin& by periodically

interrupting the monitored process to record the value of its program counter. Based on the data collected, the

time spent in various parts of a pro&ironcan be determined. Event samplin& techniques have been applied suc-

cessfully on sequential programs for many years now. In a parallel processing environment however, event

sampling might not be feasible because a sampling process can be highly intrusive. Even if the problem of in-
trusion is overcome through the use of specialized instrumentation hardware, the inter-process event depen-

dencies often found in parallel programs cannot be reconstructed based on statistical data alone.

The use of passive event recorders requires specialized instrumentation hardware for implementation. The

word "passive" implies that a monitored system does not do anything extra for performance data to be col-
lected. Program state, therefore, must be deduced from low-level data gathered from various devices such as

addresses/data placed on buses or values in registers. Even with simple sequential programs, a large amount

of data has to be gathered. This implies that instrumentation hardware for parallel systems has to cope with

even higher data rates and capacities. Furthermore, hardware monitors tend to be inflexible and vendor spe-

cific. The algorithms that relate collected data to program source code must take into account specific

compilation strategies and operating system versions. It takes a lot of effort to build a single passive instru-

mentation system -- not to mention building a suite across different software/hardware architectures for re-

search and developmenL

Inserted active event recorders collect exactly what you want to measure -- no more no less. Just like

putting print-statements at various points in the program to trace its control-flow, "event records", which

indicate event types and their times of occurrence, can be placed at various points of the source code.

Program execution can then be easily reconstructed based on these records. The tedious task of instrumenting

program source code can be automated, even across different parallel programming langoages 1. Furthermore,

this approach is highly portable since the program is instrumented at the source code level. The performance

of an instrumented parallel program can be studied on any machine without major modification. Because the

event format can be standardized across different machines/languages, only one set of performance analysis

tools is required to interpret the data gathered. Although the overhead of this approach is not negligible, it still

can be accurately measured, characterized and factored out using various compensation techniques (e.g. [3]).

1.3. Outline of Paner

The goal of this paper is to present some of the techniques and methodologies employed in the instrumenta-

tion and performance debugging of applications executing on multiprocessors. To that end, this paper will pre-

sent our current tool set, the Ames InstruMentation System (AIMS), as an example. Section 2 of the paper de-

scribes how AIMS monitors program execution. The source code instrumentor automatically inserts active

event recorders (i.e. subroutine calls to the run-time performance monitoring library) into the source code be-

fore compilation. Performance data generated by these event recorders are gathered into a trace file from

which the visuaUza6on tool-set reconstructs program execution. Section-3 contains a sample of views obtained

1 Forexample, PIE [7] uses a source code instrmnentorthathandles parallelprogramswrittenin C, Ada, and FORTRAN.

378

using AIMS to measure the performance of a parallel version of ARC2D, a computational fluid dynamics
application, on the Intel iPSC/860 at NASA Ames Research Center. In this case, AIMS helped the researcher

to identify execution bottlenecks and room for improvement. Conclusions and directions for future research are
discussed in section 4.

2. THE AMES INSTRUMENTATION SYSTEM

2.1. Structural Overview

AIMS is designed to facilitate performance evaluation of parallel applications on multiprocessors by

capturing and visualizing execution data. AIMS has three major software components: a source code

instrumenwr, a run-time performance moniwring library and a visualization tool-set.

The inslrumentor inserts active event recorders (i.e. function calls to the monitor library) directly into the

application source code with little or no intervention by the user. AlMS provides a graphical interface for the
researcher to selectively instrument his/her code. As shown in Figure 1, specific modules and procedure calls

can be selected/deselected easily via the click of a mouse. Thus, the programmer is relieved of the tedious

work of instrumentation by hand.

The monitor library provides
a set of active event recorders

to measure and record various

aspects of program performance

such as message passing over-

head, processor synchronization

overhead, and processor time

spent in user defined areas of

the application.

The visualization tool-set pro-

cesses the execution data gath-

ered and displays them using

graphical views. Detailed in-

formati,m showing how the

application interacted with the

multiprocessor is presented

using animated views, from
which processor state, imple-
mentation bottlenecks and load

imbalances can easily be ob-
served. Performance statistics

of the entire program execution
can also be gathered and dis-

played via statistical views to

provide insights into the general

behavior of the program; these

may yield valuable clues

regarding .where the animated
views should be focused.

2.2. II_e Overview

AIMS Source Code Instrumentor

_kpplication Database t _/app]._db I

t I

,o,.x..-Is.-=t ll°'='"'c",mI
arc2d_host.f

ed[e.e.f
Irecv

edge_news.f

Subroul:lne edge_nemt

Irecv

Csend

Return

[
Figure 1. Graphical Interface to AIM's Source Code lnstrumentor

By applying each of the AIMS components sequentially, the performance of various parallel programs on a

multiprocessor can be evaluated. As shown in Figure 2, the source code is first instrumented automatically by

379

AIMS's instrumentor. By default, points of interest include message sending, receiving and blocking as well

as procedure entries and exits. The user may specify the procedures and code blocks to be monitored, as well

as other instrumentation parameters, via a configuration file• Besides adding code at various points in the

source code to generate event records, some system calls are replaced by monitor library calls when timing
measurements have to be made within such calls 2. After the source code is instrumented, it is compiled and

linked with the run-time performance monitoring library.

The instrumented program is then loaded and run on the multiprocessor. Performance data is gathered during

program execution and stored to local memory buffers. Periodically, these buffers fill up and the data is writ-

ten out to a trace file on the file system. Event records generated include:

• procedure events -- provide performance data on user selected subroutines;

• blocking events -- indicate waiting time spent on synchronization;

• messa&e events -- records message transmission time, message size, destination and type; and
• statistical event records -- summarizes cumulative performance statistics at specified points of program

execution.

Finally, the trace file, which contains the event records for a monitored program execution, is collected and

transferred to a graphic work station to be processed and displayed in various formats. The visuali:ation tool-

set reads the performance data from the trace file and interprets that information on a variety of X-window

based displays. With the aid of an example, we will illustrate how different displays can capture various

aspects of system performance in section 3.

Code Instnnnentation Phase

Native Fortran Instrumented
Source Code Fortran Source Code

x... Appl_ation
_UBROUTINE X CALL PROC BEG Plogranl '

DIMENSION CALL SYBC SEND .

CALL CSEND {..)

• .. CALL SYNC _.

CALL CRECV {...)

•-_ : : os iuvpo/t: :
•. • CALL PROC BEG- "Rontines" • •

Automatic
Compile & Link

System Disk

SGI Sun DecStation Visualization Phase

Figure 2. Using AIMS to Collect Performance Data

2 For example, SYNC_SEND and SYNC RECV replaces CSENDand CRECVon the Intel iPSC/860 while at the same lime,

providing timing data about this message transaction.

380

3. VISUALIZING PARALLEL PROGRAM EXECUTION

3.1. The Eyamnle Annlieation

A grand challenge of NASA's High Performance Computing and Communications Program [4] involves the
development of parallel Computational Fluid Dynamics (CFD) programs. CFD involves the numerical solu-

tion of a system of nonlinear partial differential (Navier-Stokes) equations -- these represent the laws of con-

servation of mass, momentmn and en_gy applied to a fluid medium in motion. One such FORTRAN program,

ARC2D [5], which applies an implicit solution algorithm to a problem with two spatial dimensions, has been

parallelized for the Intel iPSC../860 Hypereube (an MIMD multiprocessor) at NASA Ames Research Center.

3.2. A Few Examnlel of AnimntLql ViewM

The AIMS visualization woiset was developed after a careful evaluation of the views provided by the

ParaGraph [6] visualization toolset and PIE [7]. We selected those that we found useful for our applications

and incorporated them into AIMS. In this paper, we only describe those views that are not provided by
ParaGraph. The OverVIEW Dia&ram shown in Figure 3 animates program execution by scrolling from right to

left. When a processing node (say #15) is busy, a colored bar is drawn (next to the label "15"). The bar is

colored according to the subroutine currently executing. White space indicates that the processing node is

idle, probably waiting for the arrival of a message. When a message is passed (say from #15 to #14), a (blue)

line is drawn from the point (on the sender's time line) when the message was sent to the point (on the
receiver's time line) when the message was removed from the queue. The A&&re&ate Processor Utilization

Chart plots processor utilization as a function of time. The height of the curve denotes the number of

processors currently busy. As shown in Figure 4, it is also color-coded according to subroutine name.

Figure 3. The OverVIEW Diagram

Besides providing views focused on the parallel program's flow of control, AIMS also provide views that

display the state of each processor at particular points in time. The Grid view shown in Figure 5 is such an

example. Each box of the Grid view displays the current state, subroutine beingexecuted, message queue size

and overall utilization for each processor. In addition, this view permits the developer to map the physical

processors of the iPSC/860 onto a two dimension mesh. Many parallel applications (such as ARC2D) can be

decomposed to topologies which may not conform exactly to the iPSC/860's hypercube.

381

rout i he)

The NCPU view summarizes the

performance charac[eristics for the

entire execution. As shown in

Figure 6, a histogram plots the nor-

realized 3 CPU usage of various

subroutine. For example, yp3.dge

spends most of its time executing

when 12 processors are busy.

Based on these animation and

statistical views, the programmer

can identify the subroutines and

message transactions associated

with periods of idleness in his/her

program. This, in turn, provides

valuable insights about the paral-

lelization strategy chosen and helps

the programmer to reformulate the

application if necessary.

Besides providing graphical data

for performance tuning, AIMS also

provide an important feature known
as source code click-back. A mouse

click in the OverVIEW will bring up

I

Figure 5. The Grid View

3 The normalized CPU usage of a subroutine is the total amount of CPU time it used divided by k where k processors were

active simultaneously.

382

a text window depending on the location of the cursor in the view. If the cursor was pointing to a message

line, the text file containing the send command will be opened and the corresponding program line will be

highlighted (as shown in Figure 7). If the cursor is pointing to an idle period of the processor and this idling

was caused by the late arrival of a message, the exact magwait call responsible will also be identified.

Finally, if the mouse is clicked over a color bar, the code for that subroutine will be retrieved.

Trace: arc2d,2x2.trace

Trace: ROUTINES,arc2d

X_x (fieih) MAIN]

li ii i .dg._. I

1
II,M I

I ALL I I I

[I
I' Routine Corlcurrerlcq

Normalized CPU usage

Figure 6. The NCPU View and its Legend

4. CONCLUSIONS AND FUTURE RESEARCH

In summary, the Ames InstruMentation System provides a suite of software tools to facilitate the tuning and

debugging of parallel applications. FORTRAN source code is instrumented automatically. Performance data

gathered from the execution of instrumented code can be displayed on a variety of workstations. These dis-

plays may provide researchers a means for observing the behavior of their programs as well as Izacing the se-
quence of operations via "source code click-back". Thus the performance and correcmess of parallel algo-

rithms on hypercubes may be evaluated easily.

Although we have shown that AIMS can be a powerful tool for the development of parallel applications, it is

not without pitfalls. One major obstacle to be overcome is data size. Programs running on parallel processors

tend to pmdace an enormous amount of performance data using the techniques described here. Furthermore,

data written to disk asynchronously from each processor must be sorted by execution time before it can be read

by the visualization toolset. If the data set is particularly large, the overhead of processing this data could

render the tools described here impractical. Our current research efforts are addressing the data size and sort-

ing problem from several directions. These solutions include:

• refining the insl_rumentor to be more selective about which portions of the program to monitor. In future

versions of the AIMS, the researcher will be able to enable and disable monitoring according to time

and processor parameters. This approach has the potential of greatly reducing the data size.
• integrating a merge sort of the raw data from the multiprocessor at the time of visualization. This tech-

nique will eliminate the time consuming pre-sorting process by performing a merge sort of the raw data

slreams coming from each processor.

383

• developing "course grain" monitoring tools to compliment the fine grain monitoring capabilities of
AIMS. The development of these tools will permit the developer to get a coarse grain view of an

application's performance behavior for sampled time periods. Such an approach should have lower

overhead in terms of data collection. Based on these coarse grain views, *,he researcher may identify

problem spots quickly which can then be examined more closely be the fine grain performance

monitoring facilities of AIMS.

Finally, all performance monitoring systems must deal (to one extent or another) with the problem of pertur-

bance. Instrumentation overhead may re-order events in different control threads of a parallel program and,

therefore, obscure the actual data collected. Future versions of AIMS will produce statistics that help deter-

mine the level of perturbance within the monitoring process and compensate the performance displays accord-

ingly.

15

14

13

12

11

10
9

8

7

6

5

4

3

2

1

0

1037.7357

OverVIEW

edge_ns.f

• .\

TIME(msed 1038.7357

Figure ?. AIMS' Source-code Click-back Feature

ACKNOWLEDGEMENTS

AIMS was put together after careful evaluation of a few software prototypes from the research community as

well as published ideas on performance visualization. We would like to acknowledge their help/support in let-

ting us adopt, adapt and augment their research prototypes for the parallel processing environment here at

NASA Ames Research Center. We also want to thank two summer students, Chris Hanson from Santa Clara

University and Sheralyn Listgarter from Stanford University who spent many hours implementing (and watch-

ing) scrolling and flickering windows on our workstation screens.

AIMS' instrumentor is implemented on top of a parser developed for PIE [7] which we obtained through the

CMU Affiliates' Program. AIMS's monitor library adopted many of the interface conventions established by

PICL -- a Portable Instrumented Communication Library [8] developed at Oak Ridge National Laboratory.

AIMS's visualization toolset incorporated display concepts use by AXE [9] from NASA Ames Research Center,

ParaGraph [6] from Oak Ridge National Laboratory and Quartz [10] from University of Washington.

384

REFERENCES

[I] M.H. ReiIly, A Performance Monitor for Parallel Programs. Ar___emic Press Inc. 1990.

[2] S.L. Gralmm, P. B. Kessler, M. K. McKusick. "gprof: a Call Graph Execution prot-der". In Proceedings

of SIGPLAN '82 SympoMum on Co_ler Cons_uction, June 1982.

[3] T.Lehr.CompensatingforPerturbationbySoftwarePerformanceMonitorsinAsynchronousComputations.

Ph.D.Dissertation,_ant ofEleclriealEngineering,CarnegieMellonUniversity,1990.

[4] Grand Challenges: High Performance Computing and Communication. A Report by the Committee on

Physical, Mathematical, and Engineering Sciences, Federal Coordinating Council for Science,

Engineering, and Technology, Off_e of Science and Technology, Executive Office of the President.
1991.

[5] D. Bailey, J. Barton, T. Lasinski, and H. Simon Ed., "The NAS Parallel Benchmarks" Report RNR-91-

002, NAS Systems Division, NASA Ames R_h Center. January 91.

[6] M. Heath and J. Ethridge. "Visualizing the Performance of Parallel Programs". IEEE Software, Vol. 8,

No. 5, Sept. 1991, pp. 29-39.

[7] Z. Segall, L. Rodolph, "PIE -- A Programming and Instrumentation Environment for Parallel

Processing," IEEE Software, VOI.2, No. 6, Nov. 1985, pp. 22-37.

[8] G.A. Geist, M. T. Heath, B. W. Peyton, P. H. Worley "PICL -- A Portable Instrumented
Communication Library" Tech Report ORNLjTM-I1130, Oak Ridge National Laboratory. May 1990.

[9] J.C. Yen. "Axe -- An Exparimentation Environment for Concurrent Systems". IEEE Software, page 25,

May 1990.

[10] T.E. Anderson and E. D. Lazowska. "Quartz: A Tool for Tuning Parallel Program Performance". In
Proceedings of SIGMETRICS '90 Conference on Measurement and Modeling of Computer Systems, May

1990, pp. 115-125.

385

